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Introduction
Various approaches have emerged in recent years to address the challenge of parallelizing optimal control (OC) algorithms. To achieve this, it is critical
to handle endpoint constraints efficiently. The contribution of our work are the follows

• A novel endpoint-explicit DDP, which is both exact and computationally efficient, offering quadratic convergence.
• Our method effectively handles rank deficiencies without increasing computational cost.
• Highly suitable for MPC applications with both forward and inverse dynamics formulations.

OC problem abstraction
OC problems subject to stagewise and endpoint
constraints can be locally resolved by solving the
following quadratic program:

min
w

1

2
w⊺Aw ´ w⊺a

subject to Bw “ b.

(1)

In this abstraction, w P Rnw represents the
primal and dual decision variables en-
countered in an OC problem without endpoint
constraints (e.g., search direction for states,
controls, and multipliers of the dynamics
constraints). Moreover, B P Rnbˆnw represents
the Jacobian of the endpoint constraint,
while A P Snw

`` is a large banded matrix that
describes the OC problem without endpoint
constraints.

The solution to this system is:

y “ ´S´1
pb ´ BA´1aq, (2a)

w “ A´1a ´ A´1B⊺y, (2b)

where S “ BA´1B⊺ denotes the Schur com-
plement, and its inversion can be efficiently
computed via a sparse Cholesky decomposition.
Here, Equation (2a) calculates the Lagrange
multiplier associated with the endpoint con-
straint. In contrast, Equation (2b) com-
putes the primal and dual variables. This is
achieved through two Riccati recursions with
different initializations. This abstract solution
results in a highly efficient algorithm capable of
handling arbitrary stagewise constraints.

Endpoint-explicit DDP
Nonlinear OC problems with endpoint constraints can be formulated using either forward or inverse
dynamics:

min
xs,us

ℓN pxN q `

N´1
ÿ

k“0

ℓkpxk,ukq

s.t. x̃0 a x0 “ 0, (initial condition) fkpxk,ukq a xk`1 “ 0, (integrator / forward dyn.)
hkpxk,ukq “ 0, (inverse dyn.) rpxN q “ 0. (endpoint constraint)

(3)
In general, our algorithm can be divided into three main steps:

1. We compute the search direction for the endpoint-independent problem
(ŵ “ A´1a) through Riccati recursion, performing the unconstrained DDP algorithm:

δû “ ´π̂ ´ Πδx̂ ,

δx̂k`1 “ fxk
δx̂k ` fuk

δûk ` f̄k`1, δx̂0 “ f̄0,
(4)

π̂u :“ Q´1
uuQu , Πu :“ Q´1

uuQux (forward dyn.)
π̂s :“ k ` pkJ

s ũuΨ
J
s qJ, Πs :“ K ` pKJ

s ũuΨ
J
s qJ

(inverse dyn.)

2. We run another Riccati recursion to compute the endpoint-dependent search direction (|W “

A´1B⊺). This step reuses the factorization computed in (1.), and replaces a by B⊺ in Equation (1):

δ qUc “ ´qπc ´ Πδ qXc ,

δ qX1
c “ fxδ qXc ` fuδ qUc , δ qXc0

“ 0, (5)

qπcu
:“ Q´1

uuQuc (forward dyn.)
qπcs

:“ kc ` pk⊺
scQ̃uuΨ

⊺
s q⊺ (inverse dyn.)

Endpoint-independent search direction

Update direction

Endpoint-dependent search direction

Compute direction

3. From Equation (2a) we calcu-
late the endpoint multiplier as

β`
“ prxN

δ qXcN
q´1pr̄ ` rxN

δx̂N q.
(6)

Finally, we update the search direc-
tion as follows:

δu “ δû ´ δ qUcβ
`,

δx1 “ δx̂1
´ δ qX1

cβ
`.

(7)

Results: Cost and feasibility, Endpoint factorization, Gymnastic Maneuvers and MPC trials
Costs and endpoint feasibility
We compared forward and inverse dynam-
ics formulations to evaluate our endpoint-
explicit strategy on problems with different
stagewise constraints. Here, inverse dynam-
ics generally converges faster, while cost and
feasibility trends vary by problem.

Endpoint factorization
On the other hand, we evaluated our
nullspace factorization’s ability to handle
rank-deficient constraints efficiently.

Compared to the Schur complement method,
it achieves similar computation times us-
ing LU or QR with pivoting.

Gymnastic maneuvers
Also, our endpoint-explicit DDP algorithm
efficiently solved complex gymnastic
maneuvers for the Talos humanoid, achiev-
ing faster convergence, shorter runtimes, and
better constraint satisfaction.

MPC trials
To demonstrate its relevance for control tasks, we ex-
perimentally validated our MPC controller using
our endpoint-explicit method on scenarios like: a B1
quadruped with a Z1 manipulator.

We compared tracking error between the traditional
cost-based penalty method and our approach with an
explicit terminal constraint. In both the simulated
and real-world scenarios, the terminal constraint
consistently improved tracking performance.


