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Symmetries in Dynamics

We study the problem of learning models of the
dynamics of systems with finite state symmetry
groups.

Symmetric Dynamical System: Let () be the set of
system's states and cpAt () — Q 1ts evolution map,
such that the system S dynamlcs are given by

wiiar = P5t(wy). Such systems are said to posses a
state symmetry group G if their evolution map is
equivariant, that is:

gD WAL = @ét(gbwt), VgeGuw €

Such systems are ubiquitous in physics, robotics, and
computer graphics:

G=Cy = {6798|gs Cgs — e}

G = K4 — {eagsagtvg’r|g§ — gt2 — g% — €,0s O gt = g’l“}
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Modelling symmetric systems

When designing numerical model of a system's
dynamics we normally select a set of observable
functions {x1,..., T | x; : Q — R} which define a
state resentation function @ := [:1:1, . ,xm] Q= X
along with a modeling state space X C R™, and an
approximate evolution map CIDQA(t X — A

For symmetric dynamical systems we are interested In
models that exploit the symmetric structure of the set
of states (). This structure stems from the relationship
between each state w € () and its set of symmetric
states Gw ={gpw |V g € G}.
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Symmetric Model: A model of a symmetric dynamical
systems is denoted as symmmetric If:

# The modeling space X C R™ w 9€w g w
IS @ symmetric vector space.

% The state representation X l"’
funtion o : 2 — X is > . g€G

G -equivariant r(w) — g»>x(w)

# The approximate evolution map is (G-equivariant.

g d2H(x(wy)) = L (z(g>wy)), VgeG,w €90

Application in Data-Driven Koopman Modelling
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Harmonic analysis of symmetric dynamics' models

For symmetric models of dynamical systems with finite symmetry groups, the structure of the symmetric modeling
space X C R™ can be leveraged through the isotypic decomposition, a standard result from harmonic analysis stating
that there exist a change of basis T' : X — X which exposes the orthogonal decomposition of the modeling space
INto a finite number of isotypic-subspaces, each featuring a unigue subgroup of symmetries:

G = Gl % G2 X oo X Gk; ‘G| < 00 @ (wo) g1 D‘ZB(CL)O) a:(.wo) -

Number of unique types of Irreps of (3 g1 > 2@ (wp) , ;

Example: Linear system in 3D

Let X C R3 and ¢4t := A € R3*3
such that:

Symmetry subgroup associated to irrep of type 1 O

w eig(A)=la+ib,a—1ib,c|], a,b,ceR

# G=Cs=1{e, 91,9797 =€}

Then, the isotypic decomposition
of X reducestoachange of
basis T : X — X exposing:

X=X o+t X%t -t X,

Iso-subspace with symmetry subgroup (&, < G
|sotypic subspace with symmetry subgroup (&, < G
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State representation in X C R™ Projection of state in 2D plane A5,

Harmonic analysis of the space of generalized coordinates

When applying the isotypic decomposition to the space of position generalized coordinates of symmetric robotic
systems, the resultant isotypic subspaces characterize orthogonal spaces of state configurations. These subspaces
become relevant in characterizing the lower-dimensional structure of locomotion gaits.
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Harmonic analysis of the space of observable functions

Our work leverages the geometric prior of state symmmetries (and the isotypic decomposition) in dynamics models
based on Koopman operator theory. These models capture temporal dynamics using the Koopman linear operator
Kat 1 Fz — Fz in the infinite-dimensional space of all state observable functions Fz = {z:Q — R}, such that:

[KAt z](wt) i= z(@ét(wt)) — z(wHAt), z€ Fz : Q) — R, w € (L.

To approximate these models in finite dimensions one needs to learn a (latent) state representation function
z=[21,...., 2] : @ = Z C RY that spans a finite-dimensional space of functions Fz = {24(:) := (2(-), @), | @ € R*}
on which the Koopman operator is approximated by a matrix as: (Katza)(-) = 2% a(-) == (2(-), KX o) = (Kaz(-), o)

Equivariant Dynamics Autoencoder (eDAE)

To learn Koopman operator models of symmmetric dynamical systems, we present the eDAE architecture: a fully
differentiable G-equivariant auto-encoder that leverages the block-diagonal and equivariant properties of the
Koopman operator.

Space of physical observables
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% momentum ~

z(wy) € 2

7t energy ( t) K Cl,lIk: Cl,dek:
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Blocks of scalar multiples of the
H identity map I of dimension
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AE-loss Reconstruction and prediction error Latent prediction error

Experimental results
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