
Inverse-DynamicsMPCviaNullspaceResolution
Carlos Mastalli1† Saroj Prasad Chhatoi2† Thomas Corbères3 Steve Tonneau3 Sethu

Vijayakumar3
1School of Engineering and Physical Sciences, Heriot-Watt University, U.K.

2Centro di Ricerca “Enrico Piaggio”, Università di Pisa, Italy
3School of Informatics, University of Edinburgh, U.K.

Introduction
Optimal control (OC) using inverse dynamics provides numerical benefits such as coarse optimization, cheaper computation of derivatives, and a high
convergence rate. But to enjoy this in MPC settings we need to handle the inverse-dynamics equality constraints efficiently and exploit its structural
and temporal structure. The contribution of our work are the follows

• A novel equality-constrained DDP that handle efficiently the inverse-dynamics constraints via nullspace parametrization.
• A combination of feasibility-driven search and merit function that increases the algorithm’s basin of attraction.
• An original formulation of inverse dynamics that considers arbitrary actuator models.
• A unique feedback MPC based on inverse dynamics integrated into a perceptive locomotion pipeline.

Optimal control approaches
Thanks to Gauss’s principle of least constraint,
the forward dynamics fit naturally into classical
optimal control.
To reduce the computational cost in inverse
dynamics settings, our approach condenses
the inverse dynamics and uses a nullspace
parametrization:
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where q, v, a are the generalized position, ve-
locity and acceleration, respectively, τ and λ are
the joint torques and contact forces.
The problem of optimal control with inverse
dynamics is described as

min
xs,us

ℓN (xN ) +
N−1∑
k=0

ℓk(xk,uk) (1)

s.t. xk+1 = fk(xk,uk)︸ ︷︷ ︸
kinematic evolution

, hk(xk,uk) = 0︸ ︷︷ ︸
inverse dynamics

.

To solve the problem efficiently we need to (i)
exploit the temporal/functional structure
and (ii) handle equality constraints effi-
ciently.

Equality-constrained DDP
To exploit the temporal structure of an inverse-dynamics optimal control problem, we apply the
dynamic programming principle as in the DDP algorithm, i.e.,
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where the Q’s describe the local ap-
proximation of the action-value func-
tion in the free space, and hx,hu are
the Jacobians of the inverse-dynamics
constraint.

This quadratic program has the following first-order necessary conditions (FONC) of optimality:[
Quu h⊤

u

hu

] [
δu
γ+

]
= −

[
Qu +Quxδx
h̄+ hxδx

]
, where γ+ = γ + δγ is the next value of

Lagrange multiplier associated to h.

The FONC are often solved using the Schur-complement factorization, but it increases compu-
tational complexity. To address this, we propose a nullspace approach that decomposes δu into
its null and range spaces.

Nullspace factorization

Our approach begins by parametrizing δu as

δu = Yδuy + Zδuz,

where Z ∈ Rnu×nz is the nullspace basis of hu,
[Y Z] spans Rnu . Using the condition huZ = 0
inside optimality condition:

δu = −πn −Πn δx,

with
πn := Zk̂n + Q̂zzΨnh̄ (feed-forward),

Πn := ZK̂n + Q̂zzΨnhx (feedback gain), (3)
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where k̂n = Q−1
zz Qz, K̂n = Q−1

zz Qzx,
Q̂zz = I − ZQ−1

zz Qzu, Ψn = Y(huY)−1,
Qz = Z⊤Qu, Qzx = Z⊤Qux, Qzu = Z⊤Quu,
Qzz = QzuZ.

When parametrizing the constraint, we search the direction along its null and range spaces (blue
planes). This allows us to perform parallel computations for computing δuy of each node, which
reduces the algorithmic complexity of the Riccati recursion.

Inverse-dynamics MPC, feedback policy and results (https://youtu.be/NhvSUVopPCI)
MPC and pipeline

Our inverse-dynamics MPC computes
whole-body motions, contact forces, and
feedback policies for the generalized ac-
celeration and contact forces at a fixed
optimization horizon.

Our nullspace factorization reduces
the computation, which is fast enough
for MPC applications.
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Feedback MPC in joint-torque space

Our inverse-dynamics MPC computes control poli-
cies for the generalized acceleration and contact
forces, i.e.,[

δa∗

δλ∗

]
= −

[
πa

πλ

]
−

[
Πa

Πλ

]
δx, (4)

To map this policy into the joint-torque space, we
use the inverse dynamics, i.e.,

δτ ∗ = −πτ −Πτ δx,

= (S∗)−1ID(q∗,v∗, δa∗, δλ∗),

where S∗ = I − A∗
τ (A

∗
τ )

−1, with A∗
τ = ∂A

∂τ

∣∣∣
q∗,v∗

,

is the selection matrix linearized around the opti-
mal state that is described by q∗, v∗. This boils
down into two procedures, one for each term: feed-
forward and feedback.

Our feedback MPC produces motions that reach
the limits of our ANYmal robot.

Our inverse-dynamics MPC quickly recovers against push
forces thanks to the adaptation of the motion feasibility.


